1,348 research outputs found

    Single chain properties of polyelectrolytes in poor solvent

    Full text link
    Using molecular dynamics simulations we study the behavior of a dilute solution of strongly charged polyelectrolytes in poor solvents, where we take counterions explicitly into account. We focus on the chain conformational properties under conditions where chain-chain interactions can be neglected, but the counterion concentration remains finite. We investigate the conformations with regard to the parameters chain length, Coulomb interaction strength, and solvent quality, and explore in which regime the competition between short range hydrophobic interactions and long range Coulomb interactions leads to pearl-necklace like structures. We observe that large number and size fluctuations in the pearls and strings lead to only small direct signatures in experimental observables like the single chain form factor. Furthermore we do not observe the predicted first order collapse of the necklace into a globular structure when counterion condensation sets in. We will also show that the pearl-necklace regime is rather small for strongly charged polyelectrolytes at finite densities. Even small changes in the charge fraction of the chain can have a large impact on the conformation due to the delicate interplay between counterion distribution and chain conformation.Comment: 20 pages, 27 figures, needs jpc.sty (included), to appear in Jour. Phys. Chem

    Structure of Polyelectrolytes in Poor Solvent

    Full text link
    We present simulations on charged polymers in poor solvent. First we investigate in detail the dilute concentration range with and without imposed extension constraints. The resulting necklace polymer conformations are analyzed in detail. We find strong fluctuations in the number of pearls and their sizes leading only to small signatures in the form factor and the force-extension relation. The scaling of the peak in the structure factor with the monomer density shows a pertinent different behavior from good solvent chains.Comment: 7 pages, 5 figures. submitted to EP

    Finite Size Polyelectrolyte Bundles at Thermodynamic Equilibrium

    Full text link
    We present the results of extensive computer simulations performed on solutions of monodisperse charged rod-like polyelectrolytes in the presence of trivalent counterions. To overcome energy barriers we used a combination of parallel tempering and hybrid Monte Carlo techniques. Our results show that for small values of the electrostatic interaction the solution mostly consists of dispersed single rods. The potential of mean force between the polyelectrolyte monomers yields an attractive interaction at short distances. For a range of larger values of the Bjerrum length, we find finite size polyelectrolyte bundles at thermodynamic equilibrium. Further increase of the Bjerrum length eventually leads to phase separation and precipitation. We discuss the origin of the observed thermodynamic stability of the finite size aggregates

    Correlation length of hydrophobic polyelectrolyte solutions

    Full text link
    The combination of two techniques (Small Angle X-ray Scattering and Atomic Force Microscopy) has allowed us to measure in reciprocal and real space the correlation length ξ\xi of salt-free aqueous solutions of highly charged hydrophobic polyelectrolyte as a function of the polymer concentration CpC_p, charge fraction ff and chain length NN. Contrary to the classical behaviour of hydrophilic polyelectrolytes in the strong coupling limit, ξ\xi is strongly dependent on ff. In particular a continuous transition has been observed from ξ∼Cp−1/2\xi \sim C_p^{-1/2} to ξ∼Cp−1/3\xi\sim C_p^{-1/3} when ff decreased from 100% to 35%. We interpret this unusual behaviour as the consequence of the two features characterising the hydrophobic polyelectrolytes: the pearl necklace conformation of the chains and the anomalously strong reduction of the effective charge fraction.Comment: 7 pages, 5 figures, submitted to Europhysics Letter

    Polyelectrolyte Bundles

    Full text link
    Using extensive Molecular Dynamics simulations we study the behavior of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction, and the bundle size. We show that for the parameter range relevant for sulfonated poly-para-phenylenes (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting to the possibility that the size of DNA aggregates is under certain circumstances thermodynamically limited.Comment: 10 pages, 8 figure

    Conductance of the single-electron transistor: A comparison of experimental data with Monte Carlo calculations

    Full text link
    We report on experimental results for the conductance of metallic single-electron transistors as a function of temperature, gate voltage and dimensionless conductance. In contrast to previous experiments our transistor layout allows for a direct measurement of the parallel conductance and no ad hoc assumptions on the symmetry of the transistors are necessary. Thus we can make a comparison between our data and theoretical predictions without any adjustable parameter. Even for rather weakly conducting transistors significant deviations from the perturbative results are noted. On the other hand, path integral Monte Carlo calculations show remarkable agreement with experiments for the whole range of temperatures and conductances.Comment: 8 pages, 7 figures, revtex4, corrected typos, submitted to PR

    On the pearl size of hydrophobic polyelectrolytes

    Full text link
    Hydrophobic polyelectrolytes have been predicted to adopt an unique pearl-necklace conformation in aqueous solvents. We present in this Letter an attempt to characterise quantitatively this conformation with a focus on DpD_p, the pearl size. For this purpose polystyrenesulfonate (PSS) of various effective charge fractions fefff_{eff} and chain lengths NN has been adsorbed onto oppositely charged surfaces immersed in water in condition where the bulk structure is expected to persist in the adsorbed state. \emph{In situ} ellipsometry has provided an apparent thickness happh_{app} of the PSS layer. In the presence of added salts, we have found: happ∼aN0feff−2/3h_{app}\sim aN^{0}f_{eff}^{-2/3} (aa is the monomer size) in agreement with the scaling predictions for DpD_p in the pearl-necklace model if one interprets happh_{app} as a measure of the pearl size. At the lowest charge fractions we have found happ∼aN1/3h_{app}\sim aN^{1/3} for the shorter chains, in agreement with a necklace/globule transition.Comment: 7 pages, 4 figures, 1 table. Published in Europhysics Letters, Vol. 62, Number 1, pp. 110-116 (2003

    Optimizing end-labeled free-solution electrophoresis by increasing the hydrodynamic friction of the drag-tag

    Full text link
    We study the electrophoretic separation of polyelectrolytes of varying lengths by means of end-labeled free-solution electrophoresis (ELFSE). A coarse-grained molecular dynamics simulation model, using full electrostatic interactions and a mesoscopic Lattice Boltzmann fluid to account for hydrodynamic interactions, is used to characterize the drag coefficients of different label types: linear and branched polymeric labels, as well as transiently bound micelles. It is specifically shown that the label's drag coefficient is determined by its hydrodynamic size, and that the drag per label monomer is largest for linear labels. However, the addition of side chains to a linear label offers the possibility to increase the hydrodynamic size, and therefore the label efficiency, without having to increase the linear length of the label, thereby simplifying synthesis. The third class of labels investigated, transiently bound micelles, seems very promising for the usage in ELFSE, as they provide a significant higher hydrodynamic drag than the other label types. The results are compared to theoretical predictions, and we investigate how the efficiency of the ELFSE method can be improved by using smartly designed drag-tags.Comment: 32 pages, 11 figures, submitted to Macromolecule

    The Tensor-Vector-Scalar theory and its cosmology

    Full text link
    Over the last few decades, astronomers and cosmologists have accumulated vast amounts of data clearly demonstrating that our current theories of fundamental particles and of gravity are inadequate to explain the observed discrepancy between the dynamics and the distribution of the visible matter in the Universe. The Modified Newtonian Dynamics (MOND) proposal aims at solving the problem by postulating that Newton's second law of motion is modified for accelerations smaller than ~10^{-10}m/s^2. This simple amendment, has had tremendous success in explaining galactic rotation curves. However, being non-relativistic, it cannot make firm predictions for cosmology. A relativistic theory called Tensor-Vector-Scalar (TeVeS) has been proposed by Bekenstein building on earlier work of Sanders which has a MOND limit for non-relativistic systems. In this article I give a short introduction to TeVeS theory and focus on its predictions for cosmology as well as some non-cosmological studies.Comment: 44 pages, topical review for Classical and Quantum Gravit
    • …
    corecore